📊General Statistics

Overview
9,798
Total Cells
14,589
Total Genes
2,000
Highly Variable Genes
0
Median Genes/Cell
0
Median UMIs/Cell
7/7
Analysis Steps
📋 Dataset Summary: This single-cell RNA-seq dataset contains 9,798 cells and 14,589 genes. After quality control and feature selection, 2,000 highly variable genes (13.7% of total) were identified for downstream analysis.
7/7 Steps Completed (100%)

🧬Gene Expression Analysis

Feature Selection
Gene Expression Overview and HVG Selection
Gene Expression
✅ Feature Selection Results: 2,000 highly variable genes were selected from 14,589 total genes (13.7%). These features will be used for dimensionality reduction and downstream analyses.

📈Principal Component Analysis

Dimensionality Reduction
PCA Results and Variance Explained
PCA Analysis
🔧 PCA Parameters
Number of components: 50
Data layer: scaled
Use highly variable genes: True

🔄Batch Effect Correction

Integration
Batch Correction Comparison: Before and After Integration
Batch Correction
🔄 Integration Methods Applied: Multiple batch correction methods were evaluated. X_scVI was selected as the optimal integration method based on benchmarking metrics.
🔧 Integration Parameters
Harmony PCs: 50
scVI latent dimensions: 30
scVI layers: 2
Best method: X_scVI

🎯Cell Clustering

7 Clusters
Final Clustering Results
Clustering Results
🎯 Clustering Summary: Automated clustering identified 7 distinct cell clusters using the SCCAF algorithm with Leiden clustering. Results are visualized using MDE (Minimum Distortion Embedding).

Cell Cycle Analysis

Phase Distribution
Cell Cycle Phase Distribution and Scores
Cell Cycle Analysis
Cell Cycle Phase Cell Count Percentage Status
G1 4,813 49.1% ✅ Normal
S 2,792 28.5% ✅ Normal
G2M 2,193 22.4% ✅ Normal

🏆Integration Method Benchmark

Auto-Selected
🏆 Best Method: X_scVI was automatically selected as the integration method. Detailed benchmarking metrics are not available.
🔧 Available Integration Methods
Harmony: ✅ Available
scVI: ✅ Available
Selected: X_scVI

⚙️Analysis Pipeline Status

Workflow
Analysis Step Status Parameters
🔍 Quality Control & Filtering ✅ Completed mode: seurat; min_cells: 3; min_genes: 200 (+ 10 more)
⚙️ Preprocessing & Normalization ✅ Completed mode: shiftlog|pearson; target_sum: 500000.0; n_HVGs: 2000 (+ 1 more)
📏 Data Scaling ✅ Completed Default parameters
📈 Principal Component Analysis ✅ Completed layer: scaled; n_pcs: 50
🔄 Cell Cycle Scoring ✅ Completed s_genes: ['Cdca7', 'Mcm4', 'Mcm7', 'Rfc2', 'Ung', 'Mcm6', 'Rrm1', 'Slbp', 'Pcna', 'Atad2', 'Tipin', 'Mcm5', 'Uhrf1', 'Polr1b', 'Dtl', 'Prim1', 'Fen1', 'Hells', 'Gmnn', 'Pold3', 'Nasp', 'Chaf1b', 'Gins2', 'Pola1', 'Msh2', 'Casp8ap2', 'Cdc6', 'Ubr7', 'Ccne2', 'Wdr76', 'Tyms', 'Cdc45', 'Clspn', 'Rrm2', 'Dscc1', 'Rad51', 'Usp1', 'Exo1', 'Blm', 'Rad51ap1', 'Cenpu', 'E2f8', 'Mrpl36']; g2m_genes: ['Cbx5', 'Aurkb', 'Cks1b', 'Cks2', 'Jpt1', 'Hmgb2', 'Anp32e', 'Lbr', 'Tmpo', 'Top2a', 'Tacc3', 'Tubb4b', 'Ncapd2', 'Rangap1', 'Cdk1', 'Smc4', 'Kif20b', 'Cdca8', 'Ckap2', 'Ndc80', 'Dlgap5', 'Hjurp', 'Ckap5', 'Bub1', 'Ckap2l', 'Ect2', 'Kif11', 'Birc5', 'Cdca2', 'Nuf2', 'Cdca3', 'Nusap1', 'Ttk', 'Aurka', 'Mki67', 'Pimreg', 'Ccnb2', 'Tpx2', 'Hjurp', 'Anln', 'Kif2c', 'Cenpe', 'Gtse1', 'Kif23', 'Cdc20', 'Ube2c', 'Cenpf', 'Cenpa', 'Hmmr', 'Ctcf', 'Psrc1', 'Cdc25c', 'Nek2', 'Gas2l3', 'G2e3']
🎵 Harmony Integration ✅ Completed n_pcs: 50
🧬 scVI Integration ✅ Completed n_layers: 2; n_latent: 30; gene_likelihood: nb
📊 Method Benchmarking ❌ Not Completed Default parameters
🎯 SCCAF Clustering Analysis ❌ Not Completed Default parameters
📋 Pipeline Summary: This analysis was completed using the OmicVerse lazy function pipeline. The pipeline automatically performed quality control, normalization, batch correction, clustering, and benchmarking to provide comprehensive single-cell RNA-seq analysis results.