Api module
Bases: GeneExp
A class used to do weighted gene co-expression network analysis.
:param name: name of the WGCNA we used to visualize data (default: 'WGCNA') :type name: str :param save: indicate if you want to save result of important steps in a figure directory (default: False) :type save: bool :param species: species of the data you use i.e mouse, human :type species: str :param level: which type of data you use including gene, transcript (default: gene) :type level: str :param outputPath: path you want to save all you figures and object (default: '', where you rau your script) :type outputPath: str :param anndata: if the expression data is in anndata format you should pass it through this parameter. X should be expression matrix. var is a gene information and obs is a sample information. :type anndata: anndata :param geneExp: expression matrix which genes are in the rows and samples are columns :type geneExp: pandas dataframe :param geneExpPath: path of expression matrix :type geneExpPath: str :param sep: separation symbol to use for reading data in geneExpPath properly :type sep: str :param geneInfo: dataframe that contains genes information it should have a same index as gene expression column names (gene/transcript ID) :type geneInfo: pandas dataframe :param sampleInfo: dataframe that contains samples information it should have a same index as gene expression index (sample ID) :type sampleInfo: pandas dataframe :param TPMcutoff: cut off for removing genes that expressed under this number along samples :type TPMcutoff: int :param cut: number to remove outlier sample (default: 'inf') By default we don't remove any sample by hierarchical clustering :type cut: float :param powers: different powers to test to have scale free network (default: [1:10, 11:21:2]) :type powers: list of int :param RsquaredCut: R squaered cut to choose power for having scale free network; between 0 to 1 (default: 0.9) :type RsquaredCut: float :param MeanCut: mean connectivity to choose power for having scale free network (default: 100) :type MeanCut: int :param networkType: Type of network we can create including "unsigned", "signed" and "signed hybrid" (default: "signed hybrid") :type networkType: str :param TOMType: Type of topological overlap matrix(TOM) including "unsigned", "signed" (default: "signed") :type TOMType: str :param minModuleSize: We like large modules, so we set the minimum module size relatively high (default: 50) :type minModuleSize: int :param naColor: color we used to identify genes we don't find any cluster for them (default: "grey") :type naColor: str :param MEDissThres: diss similarity threshold (default: 0.2) :type MEDissThres: float :param figureType: extension of figure (default: "pdf") :type figureType: str :param MEs: eigengenes :type MEs: ndarray :param geneExpr: gene expression object that contains raw gene expression along with gene and sample information. :type geneExpr: geneExp class :param datExpr: data expression data that contains preprocessed data :type datExpr: anndata :param dynamicMods: name of modules by clustering similar genes together :type dynamicMods: list :param TOM: topological overlap measure using average linkage hierarchical clustering which inputs a measure of interconnectedness :param TOM: ndarray :param adjacency: adjacency matrix calculating base of the type of network :type adjacency: ndarray :param geneTree: average hierarchical clustering of dissTOM matrix :type geneTree: ndarray :param power: power to have scale free network (default: 6) :type power: int :param sft: soft threshold table which has information for each powers :type sft: pandas dataframe :param datME: :type datME: pandas dataframe :param signedKME:(signed) eigengene-based connectivity (module membership) :type signedKME: pandas dataframe :param moduleTraitCor: correlation between each module and metadata :type moduleTraitCor: pandas dataframe :param moduleTraitPvalue: p-value of correlation between each module and metadata :type moduleTraitPvalue: pandas dataframe
__init__(name='WGCNA', TPMcutoff=1, powers=None, RsquaredCut=0.9, MeanCut=100, networkType='signed hybrid', TOMType='signed', minModuleSize=50, naColor='grey', cut=float('inf'), MEDissThres=0.2, species=None, level='gene', anndata=None, geneExp=None, geneExpPath=None, sep=',', geneInfo=None, sampleInfo=None, save=False, outputPath=None, figureType='pdf')
¶
calculate_soft_threshold(colorlist=None, **kwargs)
¶
calculate_geneTree()
¶
calculate_dynamicMods(kwargs_function={'cutreeHybrid': {'deepSplit': 2, 'pamRespectsDendro': False}})
¶
calculate_gene_module(kwargs_function={'cutreeHybrid': {'deepSplit': 2, 'pamRespectsDendro': False}})
¶
get_sub_module(mod_list, mod_type='module_color')
¶
Get sub-module of a module
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mod_list |
list
|
module number |
required |
Returns:
Name | Type | Description |
---|---|---|
sub_module |
pd.DataFrame
|
sub-module of a module |
get_sub_network(mod_list, mod_type='module_color', correlation_threshold=0.95)
¶
Get sub-network of a module
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mod_list |
list
|
module number |
required |
Returns:
Name | Type | Description |
---|---|---|
sub_network |
nx.Graph
|
sub-network of a module |
plot_sub_network(mod_list, mod_type='module_color', correlation_threshold=0.95, plot_genes=None, plot_gene_num=5, **kwargs)
¶
plot sub-network of a module
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mod_list |
list
|
module number |
required |
correlation_threshold |
float
|
correlation threshold |
0.95
|
plot_genes |
genes to plot in the sub-network. If None, the hub genes will be ploted |
None
|
|
plot_gene_num |
int
|
number of genes to plot |
5
|
Returns:
Name | Type | Description |
---|---|---|
fig | figure |
|
ax | axis |
plot_matrix(cmap='RdBu_r', save=True, figsize=(8, 9), legene_ncol=2, legene_bbox_to_anchor=(5, 2.95), legene_fontsize=12, color_type='dynamicColors', **kwargs)
¶
plot the matrix of correlation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cmap |
The color of matrix |
'RdBu_r'
|
|
save |
bool
|
Whether to save the figure |
True
|
figsize |
tuple
|
The size of figure |
(8, 9)
|
legene_ncol |
int
|
The number of column of legene |
2
|
legene_bbox_to_anchor |
tuple
|
The position of legene |
(5, 2.95)
|
legene_fontsize |
int
|
The size of legene |
12
|
Returns:
Name | Type | Description |
---|---|---|
ax | The axis of figure |
show_root_heading: true
show_source: true