Skip to content

Release Notes

v 1.0.0

  • First public release.

v 1.1.7

bulk module:

  • Added Deseq2, including pyDEseq functions: deseq2_normalize, estimateSizeFactors, estimateDispersions, Matrix_ID_mapping.
  • Included TCGA with TCGA.
  • Introduced Enrichment with functions geneset_enrichment, geneset_plot.

single module:

  • Integrated scdrug with functions autoResolution, writeGEP, Drug_Response.
  • Added cpdb with functions cpdb_network_cal, cpdb_plot_network, cpdb_plot_interaction, cpdb_interaction_filtered.
  • Included scgsea with functions geneset_aucell, pathway_aucell, pathway_aucell_enrichment, pathway_enrichment, pathway_enrichment_plot.

v 1.1.8

single module:

  • Addressed errors in cpdb, including import errors and color issues in cpdb_plot_network.
  • Introduced cpdb_submeans_exacted in cpdb for easy sub-network extraction.

v 1.1.9

bulk2single module:

  • Added the bulk2single module.
  • Fixed model load error from bulk2space.
  • Resolved early stop issues from bulk2space.
  • Included more user-friendly input methods and visualizations.
  • Added loss history visualization.

utils module:

  • Introduced pyomic_palette in the plot module.

v 1.1.10

  • Updated all code references.

single module:

  • Fixed non-valid parameters in single.mofa.mofa_run function.
  • Added layer raw count addition in single.scanpy_lazy function.
  • Introduced utils.plot_boxplot for plotting box plots with jittered points.
  • Added bulk.pyDEseq.plot_boxplot for plotting box plots with jittered points for specific genes.

v 1.2.0

bulk module:

  • Fixed non-valid cutoff parameter in bulk.geneset_enrichment.
  • Added modules: pyPPI, pyGSEA, pyWGCNA, pyTCGA, pyDEG.

bulk2single module:

  • Introduced bulk2single.save for manual model saving.

v 1.2.1-4

single module:

  • Added pySCSA module with functions: cell_anno, cell_anno_print, cell_auto_anno, get_model_tissue.
  • Implemented doublet cell filtering in single.scanpy_lazy.
  • Added single.scanpy_cellanno_from_dict for easier annotation.
  • Updated SCSA database from CellMarker2.0.
  • Fixed errors in SCSA database keys: Ensembl_HGNC and Ensembl_Mouse.

v 1.2.5

single module:

  • Added pyVIA module with functions: run, plot_piechart_graph, plot_stream, plot_trajectory_gams, plot_lineage_probability, plot_gene_trend, plot_gene_trend_heatmap, plot_clustergraph.
  • Fixed warning error in utils.pyomic_plot_set.
  • Updated requirements, including pybind11, hnswlib, termcolor, pygam, pillow, gdown.

v 1.2.6

single module:

  • Added pyVIA.get_piechart_dict and pyVIA.get_pseudotime.

v 1.2.7

bulk2single module:

  • Added Single2Spatial module with functions: load, save, train, spot_assess.
  • Fixed installation errors for packages in pip.

v 1.2.8

  • Fixed pip installation errors.

bulk2single module:

  • Replaced deep-forest in Single2Spatial with Neuron Network for classification tasks.
  • Accelerated the entire Single2Spatial inference process using GPU and batch-level estimation by modifying the predicted_size setting.

v 1.2.9

bulk module:

  • Fixed duplicates_index mapping in Matrix_ID_mapping.
  • Resolved hub genes plot issues in pyWGCNA.plot_sub_network.
  • Fixed backupgene in pyGSEA.geneset_enrichment to support rare species.
  • Added matrix plot module in pyWGCNA.plot_matrix.

single module:

  • Added rank_genes_groups check in pySCSA.

bulk2single module:

  • Fixed import error of deepforest.

v 1.2.10

  • Renamed the package to omicverse.

single module:

  • Fixed argument error in pySCSA.

bulk2single module:

  • Updated plot arguments in bulk2single.

v 1.2.11

bulk module:

  • Fixed wilcoxon method in pyDEG.deg_analysis.
  • Added parameter setting for treatment and control group names in pyDEG.plot_boxplot.
  • Fixed figure display issues in pyWGCNA.plot_matrix.
  • Fixed category correlation failed by one-hot in pyWGCNA.analysis_meta_correlation.
  • Fixed network display issues in pyWGCNA.plot_sub_network and updated utils.plot_network to avoid errors.

v 1.3.0

bulk module:

  • Added DEseq2 method to pyDEG.deg_analysis.
  • Introduced pyGSEA module in bulk.
  • Renamed raw pyGSEA to pyGSE in bulk.
  • Added get_gene_annotation in utils for gene name transformation.

v 1.3.1

single module:

  • Added get_celltype_marker method.

single module:

  • Added GLUE_pair, pyMOFA, pyMOFAART module.
  • Added tutorials for Multi omics analysis by MOFA and GLUE.
  • Updated tutorial for Multi omics analysis by MOFA.

v 1.4.0

bulk2single module:

  • Added BulkTrajBlend method.

single module:

  • Fixed errors in scnocd model.
  • Added save, load, and get_pair_dict in scnocd model.

utils module:

  • Added mde method.
  • Added gz format support for utils.read.

v 1.4.1

preprocess module:

  • Added pp (preprocess) module with qc (quantity control), hvg (high variable feature), pca.
  • Added data_files for cell cycle calculation from Cellula and pegasus.

v 1.4.3

preprocess module: - Fixed sparse preprocess error in pp. - Fixed trajectory import error in via. - Added gene correlation analysis of trajectory.

v 1.4.4

single module:

  • Added panglaodb database to pySCSA module.
  • Fixed errors in pySCSA.cell_auto_anno when some cell types are not found in clusters.
  • Fixed errors in pySCSA.cell_anno when rank_genes_groups are not consistent with clusters.
  • Added pySIMBA module in single for batch correction.

preprocess module:

  • Added store_layers and retrieve_layers in ov.utils.
  • Added plot_embedding_celltype and plot_cellproportion in ov.utils.

v 1.4.5

single module:

  • Added MetaTiME module to perform cell type annotation automatically in TME.

v 1.4.12

  • Updated conda install omicverse -c conda-forge.

single module:

  • Added pyTOSICA module to perform cell type migration from reference scRNA-seq in Transformer model.
  • Added atac_concat_get_index, atac_concat_inner, atac_concat_outer functions to merge/concatenate scATAC data.
  • Fixed MetaTime.predicted when Unknown cell type appears.

preprocess module:

  • Added plot_embedding in ov.utils to plot UMAP in a special color dictionary.

v 1.4.13

bulk module:

  • Added mad_filtered to filter robust genes when calculating the network in ov.bulk.pyWGCNA module.
  • Fixed string_interaction in ov.bulk.pyPPI for string-db updates.

preprocess module:

  • Changed mode argument of pp.preprocess to control preprocessing steps.
  • Added ov.utils.embedding, ov.utils.neighbors, and ov.utils.stacking_vol.

v 1.4.14

preprocess module:

  • Added batch_key in pp.preprocess and pp.qc.

utils module:

  • Added plot_ConvexHull to visualize the boundary of clusters.
  • Added weighted_knn_trainer and weighted_knn_transfer for multi-adata integration.

single module:

  • Fixed import errors in mofa.

v 1.4.17

bulk module:

  • Fixed compatibility issues with pydeseq2 version 0.4.0.
  • Added bulk.batch_correction for multi-bulk RNA-seq/microarray samples.

single module:

  • Added single.batch_correction for multi-single cell datasets.

preprocess module:

  • Added parameter layers_add in pp.scale.

v 1.5.0

single module:

  • Added cellfategenie to calculate timing-associated genes/genesets.
  • Fixed the name error in atac_concat_outer.
  • Added more kwargs for batch_correction.

utils module:

  • Added plot_heatmap to visualize the heatmap of pseudotime.
  • Fixed embedding when the version of mpl is larger than 3.7.0.
  • Added geneset_wordcloud to visualize geneset heatmaps of pseudotime.

v 1.5.1

single module:

  • Added scLTNN to infer cell trajectory.

bulk2single module:

  • Updated cell fraction prediction with TAPE in bulk2single.
  • Fixed group and normalization issues in bulk2single.

utils module:

  • Added Ro/e calculation (by: Haihao Zhang).
  • Added cal_paga and plot_paga to visualize the state transfer matrix.
  • Fixed the read function.

v 1.5.2

bulk2single Module:

  • Resolved a matrix error occurring when gene symbols are not unique.
  • Addressed the interpolation issue in BulkTrajBlend when target cells do not exist.
  • Corrected the generate function in BulkTrajBlend.
  • Rectified the argument for vae_configure in BulkTrajBlend when cell_target_num is set to None.
  • Introduced the parameter max_single_cells for input in BulkTrajBlend.
  • Defaulted to using scaden for deconvolution in Bulk RNA-seq.

single Module:

  • Fixed an error in pyVIA when the root is set to None.
  • Added the TrajInfer module for inferring cell trajectories.
  • Integrated Palantir and Diffusion_map into the TrajInfer module.
  • Corrected the parameter error in batch_correction.

utils Module:

  • Introduced plot_pca_variance_ratio for visualizing the ratio of PCA variance.
  • Added the cluster and filtered module for clustering the cells
  • Integrated MiRA to calculate the LDA topic

v 1.5.3

single Module:

  • Added scVI and MIRA to remove batch effect

space Module:

  • Added STAGATE to cluster and denoisy the spatial RNA-seq

pp Module:

  • Added doublets argument of ov.pp.qc to control doublets('Default'=True)

v 1.5.4

bulk Module:

  • Fixed an error in pyDEG.deg_analysis when n_cpus can not be set in pyDeseq2(v0.4.3)

single Module:

  • Fixed an argument error in single.batch_correction of combat

utils Module:

  • Added venn4 plot to visualize
  • Fixed the label visualization of plot_network
  • Added ondisk argument of LDA_topic

space Module:

  • Added Tangram to mapping the scRNA-seq to stRNA-seq

v 1.5.5

pp Module:

  • Added max_cells_ratio and max_genes_ratio to control the max threshold in qc of scRNA-seq

single Module:

  • Added SEACells model to calculate the metacells from scRNA-seq

space Module:

  • Added STAligner to integrate multi stRNA-seq

v 1.5.6

pp Module

  • Added mt_startswith argument to control the qc in mouse or other species.

utils Module

  • Added schist method to cluster the single cell RNA-seq

single Module

  • Fixed the import error of palantir in SEACells
  • Added CEFCON model to identify the driver regulators of cell fate decisions

bulk2single Module

  • Added use_rep and neighbor_rep argument to configure the nocd

space Module

  • Added SpaceFlow to identify the pseudo-spatial map

v 1.5.8

pp Module

  • Added score_genes_cell_cycle function to calculate the cell cycle

bulk Module

  • Fixed dds.plot_volcano text plot error when the version of adjustText larger than 0.9

single Module

  • Optimised MetaCell.load model loading logic
  • Fixed an error when loading the model usng MetaCell.load
  • Added tutorials of Metacells

pl Module

Add pl as a unified drawing prefix for the next release, to replace the drawing functionality in the original utils, while retaining the drawing in the original utils.

  • Added embedding to plot the embedding of scRNA-seq using ov.pl.embedding
  • Added optim_palette to provide a spatially constrained approach that generates discriminate color assignments for visualizing single-cell spatial data in various scenarios
  • Added cellproportion to plot the proportion of stack bar of scRNA-seq
  • Added embedding_celltype to plot the figures both celltype proportion and embedding
  • Added ConvexHull to plot the ConvexHull around the target cells
  • Added embedding_adjust to adjust the text of celltype legend in embedding
  • Added embedding_density to plot the category density in the cells
  • Added bardotplot to plot the bardotplot between different groups.
  • Added add_palue to plot the p-threshold between different groups.
  • Added embedding_multi to support the mudata object
  • Added purple_color to visualize the purple palette.
  • Added venn to plot the venn from set 2 to set 4
  • Added boxplot to visualize the boxdotplot
  • Added volcano to visualzize the result of differential expressed genes

v 1.5.9

single Module

  • Added slingshot in single.TrajInfer
  • Fixed some error of scLTNN
  • Added GPU mode to preprocess the data
  • Added cNMF to calculate the nmf

space Module

  • Added Spatrio to mapping the scRNA-seq to stRNA-seq

v 1.6.0

Move CEFCON,GNTD,mofapy2,spaceflow,spatrio,STAligner,tosica from root to externel module.

space Module

  • Added STT in omicverse.space to calculate the spatial transition tensor.
  • Added scSLAT in omicverse.externel to align of different spatial slices.
  • Added PROST in omicverse.externel and svg in omicverse.space to identify the spatially variable genes and domain.

single Module

  • Added get_results_rfc in omicverse.single.cNMF to predict the precise cluster in complex scRNA-seq/stRNA-seq
  • Added get_results_rfc in omicverse.utils.LDA_topic to predict the precise cluster in complex scRNA-seq/stRNA-seq
  • Added gptcelltype in omicverse.single to annotate celltype using large language model #82.

pl Module

  • Added plot_spatial in omicverse.pl to visual the spot proportion of cells when deconvolution

v 1.6.2

Support Raw Windows platform

  • Added mde in omicverse.pp to accerate the umap calculation.

v 1.6.3

  • Added ov.setting.cpu_init to change the environment to CPU.
  • Move module tape,SEACells and palantir to externel

Single Module

  • Added CytoTrace2 to predict cellular potency categories and absolute developmental potential from single-cell RNA-sequencing data.
  • Added cpdb_exact_target and cpdb_exact_source to exact the means of special ligand/receptor
  • Added gptcelltype_local to identify the celltype using local LLM #96 #99

Bulk Module

  • Added MaxBaseMean columns in dds.result to help people ignore the empty samples.

Space Module

  • Added **kwargs in STT.compute_pathway
  • Added GraphST to identify the spatial domain

pl Module

  • Added cpdb_network, cpdb_chord, cpdb_heatmap, cpdb_interacting_network,cpdb_interacting_heatmap and cpdb_group_heatmap to visualize the result of CellPhoneDB

utils Module

  • Added mclust_py to identify the Gaussian Mixture cluster
  • Added mclust methdo in cluster function

v 1.6.4

Bulk Module

  • Optimised pyGSEA's geneset_plot visualisation of coordinate effects
  • Fixed an error of pyTCGA.survival_analysis when the matrix is sparse. #62, #68, #95
  • Added tqdm to visualize the process of pyTCGA.survial_analysis_all
  • Fixed an error of data_drop_duplicates_index with remove duplicate indexes to retain only the highest expressed genes #45
  • Added geneset_plot_multi in ov.bulk to visualize the multi results of enrichment. #103

Single Module

  • Added mellon_density to calculate the cell density. #103

PP Module

  • Fixed an error of ov.pp.pca when pcs smaller than 13. #102
  • Added COMPOSITE in ov.pp.qc's method to predicted doublet cells. #103
  • Added species argument in score_genes_cell_cycle to calculate the cell phase without gene manual input

v 1.6.6

Pl Module

  • Fixed the 'celltyep_key' error of ov.pl.cpdb_group_heatmap #109
  • Fixed an error in ov.utils.roe when some expected frequencies are less than expected value.
  • Added cellstackarea to visual the Percent stacked area chart of celltype in samples.

Single Module

  • Fixed the bug of ov.single.cytotrace2 when adata.X is not sparse data. #115, #116
  • Fixed the groupby error in ov.single.get_obs_value of SEACells.
  • Fixed the error of cNMF #107, #85
  • Fixed the plot error when Pycomplexheatmap version > 1.7 #136

Bulk Module

  • Fixed an key error in ov.bulk.Matrix_ID_mapping
  • Added enrichment_multi_concat in ov.bulk to concat the result of enrichment.
  • Fixed the pandas version error in gseapy #137

Bulk2Single Module

  • Added adata.var_names_make_unique() to avoid mat shape error if gene not unique. #100

Space Module

  • Fixed an error in construct_landscape of ov.space.STT
  • Fixed an error of get_image_idx_1D in ov.space.svg #117
  • Added COMMOT to calculate the cell-cell interaction of spatial RNA-seq.
  • Added starfysh to deconvolute spatial transcriptomic without scRNA-seq (#108)

PP Module

  • Updated constraint error of ov.pp.mde #129
  • Fixed type error of float128 #134

v 1.6.7

Space Module

  • Added n_jobs argument to adjust thread in extenel.STT.pl.plot_tensor_single
  • Fixed an error in extenel.STT.tl.construct_landscape
  • Updated the tutorial of COMMOT and Flowsig

Pl Module

  • Added legend_awargs to adjust the legend set in pl.cellstackarea and pl.cellproportion

Single Module

  • Fixed the error of get_results and get_results_rfc in cNMF module. (#143) (#139)
  • Added sccaf to obtain the best clusters.
  • Fixed the .str error in cytotrace2 (#146)

Bulk Module

  • Fixed the import error of gseapy in bulk.geneset_enrichment
  • Optimized code logic for offline enrichment analysis, added background parameter
  • Added pyWGCNA package replace the raw calculation of pyWGCNA (#162)

Bulk2Single Module

  • Remove _stat_axis in bulk2single_data_prepare and use index instead of it (#160).

PP Module

  • Fixed a return bugs in pp.regress_and_scale (#156)
  • Fixed a scanpy version error when using ov.pp.pca (#154)

v 1.6.8

Bulk Module

  • Fixed the error of log_init in gsea_obj.enrichment (#184)
  • Added ax argument to visualize the geneset_plot

Space Module

  • Added CAST to integrate multi slice
  • Added crop_space_visium in omicverse.tl to crop the sub area of space data

Pl Module

  • Added legend argument to visualize the cpdb_heatmap
  • Added text_show argument to visualize the cellstackarea
  • Added ForbiddenCity color system

v 1.6.9

PP Module

  • Added recover_counts to recover counts after ov.pp.preprocess
  • removed the lognorm layers added in ov.pp.pca

Single Module

  • Added MultiMap module to integrate multi species
  • Added CellVote to vote the best cells
  • Added CellANOVA to integrate samples and correct the batch effect
  • Added StaVia to calculate the pseudotime and infer trajectory.

Space Module

  • Added ov.space.cluster to identify the spatial domain
  • Added Binary for spatial cluster
  • Added Spateo to calculate the SVG